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Abstract  

We present criteria for comparing measurements on a given system from the point of 
view of the information they provide. These criteria lead to a concept of informational 
completeness of a set of observables, which generalizes the conventional concept of 
completeness. The entropy of a state with respect to an arbitrary sample space of 
potential measurement outcomes is defined, and then studied in the context of con- 
figuration space and fuzzy stochastic phase space. 

1. Introduction 

Obviously, one of  the basic purposes of  any measurement procedure is to 
gather information.  Yet, little a t tempt  has been made in setting general 
guidelines for ranking different measuring procedures (on a given physical 
system) according to the effectiveness with which this task is achieved. 

In trying to provide such guidelines, we are faced from the start  with the 
fundamental  problem of  presenting a precise definition of  the term 
"informat ion."  At first sight, the solution might seem obvious since 
information theory is a well-developed discipline, and the notion o f  entropy 
of  a random phenomenon 

N 

S = -  ~ p i l n p  i (1.1) 
i=1 

with N possible outcomes was long ago introduced by Shannon (1948) and 
others (cf. Aczel and Daroczy, 1975) as a suitable measure of  information.  
Thus, as long as a measurement procedure can be regarded as supplying 
information in the form of  assigning weights Pi to various possibilities from 
a finite sample space X, (1.1) can be taken as a measure of  that information.  
However, many of  the sample spaces in physics are infinite (having a cardinal 
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number equal to or larger than that of  the real line) and the probabilities are 
determined only within certain margins of error. This indicates that no 
absolute measure of information, but only an informational ordering might 
be feasible. Furthermore, this ordering might be only partial when measure- 
ment procedures over different sample spaces (e.g., position and angular 
momentum spaces) are compared. This turns out to be actually the case in 
quantum mechanics owing to the presence of incompatible observables, 
which prohibit the adoption of  the most straightforward strategy of solving 
this last problem, namely, that of  taking the Cartesian product of the two 
original spaces as a new sample space. 

In Section 2 we introduce a partial ordering of all conceivable measure- 
ment procedures on a given system. This ordering is based upon set- 
theoretical inclusion of the states compatible with the data extractable 
from such measurements, and represents a natural extension of the type of 
reasoning that underlies some definitions (Haag and Kastler, 1964; Prugove~kA, 
1966) of physical equivalence of quantum theories. It also crystallizes part 
of the motivation behind the recent introduction (Prugove~ki, 1976a) of the 
concept of fuzzy simultaneous measurement of noncommuting observables 
in quantum mechanics, since it clearly displays the informational gain 
resulting from such measurements. 

In Section 3 we show that for preparatory measurements this partial 
ordering can be made into a linear ordering by introducing the concept of 
entropy of such measurements with respect to a given sample space-a 
concept based upon a corresponding concept of entropy for states. 

2. A Partial Ordering of Measurements According to their 
State-Resolution Capability 

One can view any measurement on an ensemble of replicas of the same 
system purely from an information-theoretical point of view, namely, as an 
informational input into the ensemble (and into the theoretical model used 
to compute the future stochastic behavior of that ensemble) if the measure- 
ment is preparatory, or as an informational output from the ensemble (which 
is then to be compared with the theoretical prediction) in case the measure- 
ment is determinative (PrugoveSki, 1973). After a reduction of the data 
resulting from the measurement procedure is performed, this informational 
transaction can be used to single out a range R ( ~ ' )  of states of the system, 
namely, those states that are compatible with the data obtained. 

As a typical example, consider a determinative simultaneous measurement 
of the commuting observables A i . . . .  A n of a quantum-mechanical system, 
i.e., a measurement that, figuratively speaking, determines the values 
~1, - - -, )~n ofA 1 . . . . .  An which each element in the ensemble "would have 
had" if the measurement apparatus had caused absolutely no disturbance in 
its behavior (cf. PrugoveSki, 1967, 1971, 1973 for details in terminology and 
notation). A reduction of the obtained data leads to a specification within 
error margins -+e(Ai) of the acceptable a priori probabilities pa (Ai) for having 
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obtained (Xl . . . .  , Xn) E A i, where A 1, A s . . . .  are suitably selected (Borel) 
sets in N n. This information can then be used in deciding which density 
operator/9 would have represented the state of the ensemble at the instant 
of measurement if there had been no disturbance caused by the measuring 
procedure itself. Since for given p the theoretically predicted probability for 
measuring a result within A i is Tr [pEA(Ai) ] , where E A (A) is the spectral 
measure of the set A = {A 1 . . . .  , An }, we must have 

I PA(dxi) - Tr [pEd(&i)] I<~ e(Ai) (2.1) 

We note that in the absence of additional information about the system, any 
statistical operator p that satisfies (2.1) for all the preselected Ai's is a valid 
choice for the state of the ensemble. Thus, the set R(~gL) of all p's satisfying 
(2.1) can be said to be compatible with the data obtained. 

This observation suggests a natural partial ordering of all conceivable 
measurements in a given ensemble; we shall say that a measurement J l  
provides more information than another measurement J//2 if R(d[1) is a 
proper subset of R(M/2); then we write Inf J//1 > Inf -¢//2. In case we only 
know that R(d[1) is a subset of R(.//L~), without knowing whether it is a 
proper subset, we shall say that "/#1 provides no less information then all2, 
and write Inf J[1 ~> Inf J/g2- Thus, loosely speaking, the fewer states are 
compatible with the data provided by a certain measurement procedure de', 
the more information Jr '  provides. If, in general, the ranges R(Jg)  specified 
by each J/g were finite sets, we could adopt the ordering according to the 
decrease in the number of their elements as the basis for transforming the 
partial ordering introduced above into a linear ordering. However, generally 
speaking, the opposite is thecase, as illustrated by measurements J¢/on 
commuting observables A 1 . . . .  , A n with continuous spectra whose R(~#) 
are specified in (2.1): If e(Ai) > 0, then the ranges R(~¢/) are uncountably 
infinite sets. 

Determinative measurements of A = {.41 . . . .  xA n } can be considered to 
provide a specification of probabilities ranges pA(A.~ + e(Ai), namely the 
probabilities computable from the frequencies with which the determined 
data fall within chosen Borel sets in R n. The more precise the apparatus used 
in the measurement and the larger the sample of extracted data, the more 
information is obtained in the sense of narrowing down the range R ( ~ ' )  of  
candidate states compatible with those data [e.g., the range of states that 
satisfy (2.1)]. Obviously, the informationally optional determinative pro- 
cedure is the one that narrows R(~#) down to a single element-the "true" 
state of  the system. Hence, in this context, given a theory and a set A of 
observables, it becomes important to understand when this can happen- i f  
not in actuality at least in an idealized limit of indefinitely increasing number 
of raw data obtained with instruments of ever-increasing accuracy. Thus, we 
are interested in whether there exists for every state p a specification of 
probabilities pd(Ai) that singles out that state exclusively. 

To state it more formally, we say a set A ~ of observables is informationally 
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complete with respect to the state 0 if there is a specification of probabilities 
pa(A) such that p is the only density operator satisfying 

Xr [E-g(A)p ] = pA(A) (2.2) 

for all the specified probabilities p,i(A); if.4 is informationally complete with 
respect to all states of the system, then we shall say that A is informationally 
complete globally. 

We note that a set .4 of commuting observables that is complete in the 
conventional sense is not informationally complete globally. In fact, such a 
set is informationally complete only with respect to pure states represented 
by simultaneous eigenvectors of all observables in the set. Moreover, if one 
of the observables has a purely continuous spectrum, then A is not informa- 
tionally complete with respect to any states whatsoever. 

A simple illustration of this point is provided by the position observables 
Q of a one-particle spinless nonrelativistic system: For every given pro- 
bability density co(x), x C R 3 , over configuration space R 3 , when there is 
one density matrix p(x, x') that satisfies 

co(x) - p(x, x), (2.3) 

there is an infinity of other solutions p of (2.3). Moreover, even if a 
simultaneous momentum probability density is specified, a unique state p 
is still not singled out. 

This last fact can be most easily demonstrated on pure states. Consider 
any wave-packet ff C L 2 (R3), 

if(x) = [ ~(x) 1 exp [i0(x)], 0 ~< 0(x) < 27r (2.4) 

for which (almost everywhere in ~3) l if(x)[ = I ff(-x) I but 

0(x) + 0(-x) :# const. (rood 2rr) (2.5) 

Then the state represented by 

~1 (X) : I ~(X) I exp [--iO(-x)] : ~*(--x) (2.6) 

is distinct from that represented by ~. Yet 

I~(x)l z = I , l(X)l 2, I f(k)l  z : [~l(k)l 2 (2.7) 

for almost all values of x, k E N3, since the first equality is true by definition, 
while the second follows from the observation that 

t~l(k ) = (2.)  -3/2 f= exp(-ikx)t~*(-x) dx 

= (2rr) -3/z f~3exp(ikx')ff*(x') dx' = ~*(k) (2.8) 

On the other hand, the specification of the probabilities 

PQ' P(A) = Tr [pE Q' r(A)] (2.9) 
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for all fuzzy (Borel) subsets A of a given open fuzzy set A 0 in the phase 
space F s (resulting from simultaneous fuzzy measurements of position Q 
and momentum P) do single out a unique p (Prugove~ki, 1976b). Thus the 
set (Q, P} is informationally complete globally. This feature of simultaneous 
(fuzzy) measurements of Q and P is all the more significant when it is 
realized that probability specifications over the entire configuration space 
are informationally equivalent in the sharp and fuzzy case, and the same 
holds true for momentum space (All and Doebner, 1976). Thus, it is not the 
"fuzziness" of measurement, but the intrinsic properties of Q and P that 
make these observables informationally complete. 

It is interesting to note that the informational equivalence of sharp and 
fuzzy measurements can be displayed also quite effectively in classical 
statistical mechanics. In fact, let Fo, o denote the conventional phase space 
of a system having n degrees of freedom, and let (for fixed s, r > 0) 

Fs, r = {(q, X (s)) x (p, X(p r)) t q, p E R n } (2.10) 

y~S)(x ) = (rrs2)-n/2 exp[_s-2(x _ q)Z] (2.11) 

be the fuzzy phase space corresponding to measurements of q and p with 
imperfectly precise instruments whose accuracy calibrations (PrugoveSki, 
1976a) at (q, p) ~ R 2n are represented by the Gaussian confidence functions 
X~ s) and X~ O, respectively. [Fs, r is the classical counterpart the quantum- 
mechanical fuzzy phase space l? s in (3.6), where, in the absence of the un- 
certainty relations, there is no lower bound on s • r]. If p(q, p) is the pro- 
bability density in Po, o for a classical ensemble, then 

p(S, ~)(q~ p) = f ~s)(x))~(pr)(k)p(x, k)dnxdnk (2,12) 

is the corresponding probability density in Fs, r. It is evident that p 1 (q, P) -=- 
P2(q, P) implies 

p~S, r)(q, p) _ p(S, r(q, p) _~ 0 (2.13) 

Moreover, the converse is also true, as can be easily seen by taking the 
Fourier transform of both sides in (2.13). This yields 

exp - - ~ x  2 - - ~  k 2 [ ~ l ( X , k ) - ~ 2 ( x , k ) ]  - 0  (2.14) 

and we conclude that Pl (x, k) =- ~2(x, k), and therefore Pl(q, P) - P2(q, P)- 
This simple argument shows that the set of all position and momentum 

observables of a classical system is informationalty complete regardless of 
whether the measurements of these observables are sharp or fuzzy. Thus the 
situation is completely analogous to that of a quantum-mechanical system, 
except that in the latter case the role of sharp measurements of position and 
momentum is played by optimal fuzzy measurements corresponding to 
instruments whose accuracy calibrations yield Gaussians having minimal 
variances with respect to the Heisenberg uncertainty relations. 
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On first sight it might seem paradoxical that global probability specifica- 
tions on both sharp and fuzzy phase space are informationally equivalent, 
although, intuitively speaking, any single measurement of  a sharp point 
(q, p) E I'o, o supplies more information then the measurement of  a corres- 
ponding fuzzy point (q, p, X(qS,'p r)) E I's, r. The paradox, however, disappears 
as soon as one realizes that any such specification requires an (uncountable) 
infinity of data since it involves absolutely accurate specifications of  pro- 
bability densities at all points in the respective I,-space. On the other hand, 
any actual measurement supplies only a finite amount of data, and therefore 
this informational equivalence does not extend to two actual measurements 
#/{1 and J///2 which supply exactly the same set of points in phase space, if 
in the case of, say, -///1 one employs instruments that are more accurate (i.e., 
instruments whose confidence functions at each point on their reading scales 
have narrower spreads) than in the case of J¢/2- On the contrary, it can be 
expected that in such a case we shall have Inf J//l > Inf J¢/2. 

3. The Entropy o f  Preparatory Measurements 

As pointed out in the preceding section, the informationally optimal 
determinative measurements d,/are the ones that narrow down the corres- 
ponding ranges R ( ~ ' )  to one-point sets, namely, the true states p in which 
the system was prior to measurement. Thus it would be meaningless to 
further differentiate between the informational efficiency of such optimal 
measurements since no improvements in the measuring procedure could 
supply any additional information: Since p is known, quantum theory 
provides the probability distributions for all other observables of the 
system. 

This statement does not apply, however, to preparatory measurement, 
whose purpose is to ensure that immediately after the measurement certain 
relevant observables A 1, - • :, An have values within specified ranges. Thus, 
let us say that as a result of the preparatory measurements JClj,j = 1,2, we 
know that the system "has" values for {,41 . . . .  , An} within the sets &], 
] = 1, 2, and that R(d/{i) = {$1}, i.e., that both J//1 and ~g/2 have prepared 
pure states represented by the respective state vectors $1 and $2- Suppose 
now that A 1 is a proper subset of A 2. Whereas the partial ordering of 
Section 2 does not differentiate between ~gll and d//2, we can nevertheless 
claim that J41 has prepared a state with more information content than 
the state prepared by d-{ 2. 

We shall impart to this observation a more universal meaning by  introduc- 
ing a linear ordering among preparatory measurements. 

We begin by defining for each state p the concept of its entropy S o with 
respect to a sample space X of (sharp or fuzzy) simultaneous values of the 
set A of observables 

= - f pp(~; At) log pp (~; X)d~ (3.1) Sp(X) 

Here the integrand pp log Po is taken to be zero at the points ~ where 
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pp(~, X) = 0, and the integration symbol is to be interpreted as summation 
when theA"integration" is carried out over the point spectra of the observ- 
ables in A. More specifically, if we assume that the observables A 1, • .-, An 
in d have absolutely continuous spectra, then the spectral measure E A over 
the Bore1 sets of the (sharp or fuzzy) sample space X is absolutely continuous 
with respect to the Lebesgue measure on Rn and the Radon-Nykodim 
derivative 

po(~,X) = tim [A -1 Tr[pEA(A)] (3.2) 

exists, so that (3.1) is a Lebesgue integral over En. Since this last case is the 
one that embodies all the mathematically nontrivial problems that (3.1) gives 
rise to, we shall limit our subsequent comments to it. 

Operationally, a sample space X consists of sharp (~, 8~) or fuzzy (~, X~) 
sample points whose confidence functions X~ are the result of accuracy 
calibrations of instruments used in determinative measurements of  A 
(Prugove~ki, 1976a, b). Typical examples of such spaces for a one-particle 
system are the sharp stochastic configuration space 

N0 3 = {(q, ~q) tq E R 3} (3.3) 

the fuzzy stochastic configuration spaces 

Rs 3 = ((q, X(~ )) lq E ~3} (3.4) 

x(S)(x) = (rrs2) -3/2 exp [ - s -2(x  - q)2] (3.5) 

for 0 < s < o% and the fuzzy stochastic phase spaces 
8-1 

Ps = {(q, X(q s)) x (p, ×¢ )) I (q, p) E R e) (3.6) 

The corresponding probability densities, in terms of the density matrix 
p(x, x'), are 

pp(q; ~o 3) = p(q, q) (3.7) 

p , (q ;  ~s 3) = f x) dx (3.8) 

Pp(q, P; Us) = f (s) (s -~) Xq (x)xp (k)w o (x, k) dx dk (3.9) 

where w o is the Wigner transform of/9. 
In the case when we are dealing with commuting observables A 1 . . . . .  An 

having finite point spectra, (3.1) coincides with (1.1) and is finite and non- 
negative. This is not so, however, for observables with continuous spectra. 
Then, in general, So(X ) can assume any real value, including also the extreme 
values -+ oo. For example, such is the case for the (sharp) configuration space 

0 3 , when 

-"~ --.< So(IRo 3) ~< + ~ (3.10) 
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This fact can be easily ascertained by noting that for any probability density 
co(q) in R 3 there are wave-packets ~(x) for which IV(q)I x = co(q), and, at 
the same time, there are many examples (Ash, 1965) of probability densities 
co(x) for which 

f co(x) dx = -+ oo (3.1 log CO(X) 1) 

In view of (3.10), it is interesting to note that 

0 < Sp (Ps) ~< + oo (3.12) 

Indeed, for any density operator p we have 

P=~,I~I)~,j(~j[, ~)k/=1 (3.13) 

where X//> 0 and (t~il~ j) = 5q. Since (Prugove~ki, 1976b) 

I ~ j (q ,  p ;s ) l  <~ II ~] l l  = 1 (3.14)  

in units with h = t,  we immediately get 

Pp(q, P; Ps) = 2; )tjl~j(q, p; S)12 ~ 1 O.15) 

Consequently 

-pp(q, p; Is) log pp(q, p; Ps) t> 0 (3.16) 

and since pp is continuous and has only isolated zeros (Prugovehki, 1976b), 
we conclude that Sp (Ps) > 0. 

In general, although the two extremes Sp(X) = -+ oo can occur in the 
continuous case, they are the exception rather than the rule. First of all, we 
evidently have So(X ) > -- = whenever Po(~; At) is almost everywhere bounded. 
Secondly, when that is so, it can be shown by an easy generalization of the 
proof of Theorem 8.3.3 by Ash (1965) that Sp(X) < + = if and only if the 
probability measure pp(~; X) has finite standard deviations o i, 

0]2 =SNn (~j - ~j)2pp(~I . . . .  , ~n ;X)  d~l . . . .  d~n (3.17) 

Furthermore, in that case 

Sp(X) <~ ½ log [(2rre)n ol 2 . . .  an ~] (3.18) 

This observation can be used to establish that there are states p with 
Sp(Ps) = + ~. Indeed, according to the aforesaid we only have to exhibit 
states p having infinite standard deviations in Ps. Let us consider therefore a 
pure state p = I~)(~ 1, which in the L2(Ps) space is represented by the 
function 

~(q, p;s) = exp [-½ t~'l 2 ]fo (~') (3.19) 

where fo is an entire function of ~" = 2-1/2(s-lq - isp): 

= ~.,,.~,., ~1 ~q'3 (3.20) 
nl~H~a~3=l 
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It turns out that (Bargmann, 1961) 

1[ ff II 2 = Xnl  !n2 !na! lan~,n~,n~ [2 (3.21) 

and that each set of coefficients {C~n~ n ,n } for which (3.21) is finite 
2 3 2 

determines a ~b EL2(Ps). For simplicity, consider only ~b(q, p; s) EL (Ps) 
whose expectation values in q and p are zero. Then obviously [ ~b(q, p; s) t 2 
will have finite variances in each component of q and p if and only if 

f I{'ff(q, p; s)12dq d p <  co (3.22) 

i.e., if and only if for j = 1,2, 3 the functions 
+ ~  " n +  ~/f~ (~) = E ~n~, n2,n~ ~ 1 t~22 ~ i ~  + ~ 3/ (3.23) 

give rise to elements of L2(Ps) when they are substituted in place of re  in 
(3.19). But in accordance with (3.21), a necessary and sufficient condition 
for these functions to belong to L2(Ps) is that 

X(nl + ~l/)!(n2 + 52/)!(n3 +63j)!IOtn~,n2,n312 <co (3.24) 

Since there obviously exist sets {%1 n2,n~} for which (3.21) converges while 
(3.24) diverges, we have established 'the existence of states p = t if)( ~bt for 
which S o (Is)  = + co. 

In conclusion let us point out that the possibility ofSa(X ) being negative 
or infinite prevents its interpretation as an absolute measure of uncertainty 
(i.e., of lack of information). But So(X ) can be taken as a relative measure 
of information, i.e., used as a means of linearly ordering all states of a 
quantum-mechanical system in relation to the information they carry with 
respect to a sample space X: We shall say that Pl carries no less information 
on the values of X than P2 does (and write Infx Pl I> Infx P2) if and only 
if So, (X1) ~< Sp~(X2). 

This ordering of states obviously implies right away a corresponding ordering 
of those preparatory measurements ~/' that prepare a single state p [i.e., for 
which R(J [ )  = {p}] with regard to the information they provide about values 
in X. However, generally speaking, R(,/ll) will contain more than one element 
and the linear ordering Infx M/t' we shall introduce in that case has to be 
consistent with the partial ordering introduced in the preceding section, i.e., 
Inf Jgl >~ Inf ,At2 should imply Infx ,//¢'1/> Infx ~ 2  (but not necessarily 
the converse!). Hence we define the entropy of any given preparatory 
measurement ~g with respect to X as a supremum, 

So/¢ (X) = sup Sp(X) (3.25) 
p ~ n ( ~ )  

We shall say that J///1 has prepared no less information on X than ~ 2  if and 
only if S j ,  (X) ~ S Ac2(X); we write then Inf x .///1 >I" Infx J/'/2. Clearly, this 
linear ordering is consistent with the partial ordering of  Section 2. 

We note that the entropy of a state as defined in the context of  quantum 
statistical mechanics is a special case of (3.t): It represents the entropy of p 
with respect to the sample space X of sharp measurements of the Hamiltonian 
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H(i.e.,  total energy) of the system. Now, in statistical mechanics the state of 
a system that is isolated and has reached a state of equilibrium is taken to 
correspond to a narrow band [E, E + el in the values of/-L Among the range 
R of all states consistent with this statement the one of maximum entropy 
is considered to be the most likely. This is the state p at which the supremum 
in (3.25) is reached, i.e., the state representing a microcanonical ensemble. 
On the other hand, if the system interacts with an infinite reservoir having a 
given temperature, among all states consistent with this fact the one for 
which Sp assumes its maximum value is again taken to be the most likely, 
only this time that is the state representing a canonical ensemble. Thus, if 
we regard the procedure of letting a system achieve a state of equilibrium as 
preparatory with respect to its internal energy, we see that (3.25) conforms 
to the postulates of quantum statistical mechanics. 

4. Conclusion 

The two central concepts that emerge from the preceding considerations 
are the informational completeness of a set of observables and the entropy 
of a state with respect to a given sample space X o f  pc~tential measurement 
outcomes. 

We have seen that a complete set of observables in the conventional sense 
is not informationally complete globally (i.e., not capable of uniquely pin- 
pointing any given state of  the system) except in trivial cases. On the other 
hand, position and momentum observables do provide (for spinless particles) 
sets that are informationally complete globally in quantum mechanics-thus 
paralleling their analogous role in classical mechanics. 

Informational completeness can be also defined for families of vectors: 
A parametrized family 0(Xl . . . . .  Xi), (Xl . . . . .  Xi) E g2, is called informa- 
tionally complete if 

f~2 Iq~(~kl . . . . .  7'i) > d/2@'l . . . . .  )ki) (0(~kl . . . . .  )ki)l = ] (4.1) 

for some measures/1 on the (Borel) subset ~2 of R n and if 

1(0(Xl . . . . .  Xi) 141)I 2 = I (0(Xl . . . . .  },i) 102)[ 2 (4.2) 

for (/J-almost) all (Xl . . . . .  Xi) ~ g2 implies 01 = C02, I C ] = l. We note that in 
a separable Hilbert space, any orthonormal basis {0ra . . . . . .  ran} of vectors 
labeled by the non-negative integral indices m l , .  • . ,  mn satisfies (4.1), but 
is not informationally complete since it does not satisfy the condition 
derived from (4.2). On the other hand, the family of coherent states 

O ( z 1 , . . . , Z n ) = T r  - n / 2  exp[--½(IZll 2 + ' - . + [ Z n l 2 ) ]  
m 1 , • • , ,  m n = 0 

Z r a ~  . . . z r a n  

x (m1!  . . . .  mn !)1/2 O m  . . . . . .  r n n  (4.3) 
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is informationally complete in the 2n real variables Re z], Im z], f = 1 . . . .  , n, 
since (Bargmann, 1961) 

h-n f~ t~zl,...,Zn))d2Zl . . . . .  d2zn(~(z l  . . . . .  Zn) t =~ (4.4) 

Thus, the nontriviat problem is not to find informationally complete 
families of  vectors (there is an uncountable infinity of  such) but rather to 
investigate which sets of  observables admit an association with some such 
families {q~(X I . . . .  , X2n)} in a manner that allows the interpretation of  

fax I(~bCA1, - •., ~-2n)I~)[2 d//(~. 1 . . . .  , X2n) (4.5) 

as being the probability of  determining (sharp or fuzzy) values (X 1 . . . . .  X2n) 
belonging to A in a simultaneous measurement of  A 1, • - -, A 2n carried in 
the system in the state q~. 

Once this stage o f  the program has carried through for a given set 
{A 1 . . . . .  A2n } (position and momentum observables providing one such 
instance) one can talk about the entropy (4.1) o f  each state with respect to 
the resulting sample space X of, in general, stochastic points. As discussed in 
Section 3, this leads then to a method of  distinguishing between different 
preparatory procedures from the point of  view of  their effectiveness in 
providing information about values in X. 
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